Radio Astronomy

Kiran Shila

Created: 2022-04-04 Mon 00:22

1. Introduction

1.1. Me

kiran.jpg

  • EE PhD student @ Caltech
  • Background in wireless engineering

2. How does a radio telescope work?

2.1. Noise

Astronomical objects are blackbody sources

For low frequency, Raleigh-Jeans (\(h\nu \ll kT\)), spectral brightness is \(B_{\nu}(T) \approx \frac{2kT}{\lambda^{2}}\) (linear with temp)

2.2. Space Noise

The radio emission from (most) astronomical sources is a stationary random process. (long timescales == steady mean power)

This noise is indistinguishable from thermal noise (like that of the system).

2.3. Noise Confusion

Every part of the system adds noise.

  • Cosmic microwave background
  • Galactic emission
  • Thermal behavior of the ground
  • Oxygen absorption
  • Physical antenna temperature
  • Receiver electronics

Total noise added by the system is the System Noise \(T_{s}\)

2.4. Radiometer

A radio telescope is a radiometer.

\(\sigma_{T} \approx \frac{T_{s}}{\sqrt{\Delta\nu t}}\)

Large bandwidths and integration time improve sensitivity

2.4.1. Example

If \(T_{s} \approx 30K\), and we observe for 5 seconds at 1 kHz of bandwidth: \(\sigma_{T} = 2*10^{-4}*T_{s}\)

If we want \(5\sigma\), that’s \(0.03K\) of sensitivity.

Consider Johnson-Nyquist noise power \(P = kT_{source}\delta \nu \approx 10^{-14}\) W

2.5. Receiver Design (my work)

The low noise amplifier (LNA) and antenna contribute the most to the system noise. I work primarily on world-class room temperature LNAs. lna.png

3. Radio Interferometry and Aperture Synthesis

3.1. Big Telescope Hard

Rayleigh Criterion \(\theta \approx 1.22 \frac{\lambda}{D}\)

3.2. Arrays to the rescue

van Cittert Zernike (Statistical Optics) \(V \approx \iint I_{\nu}e^{-2i\pi(ul + vm)}dldm=F(I_{\nu}(l,m))\)

3.2.1. Long Wavelength Array

lwa.jpg

3.2.2. UV Coverage

uv.png

3.2.3. Synthesized Beam

uv_fft.png

3.3. Compressed Sensing

dirty_map.png

3.4. Maximum Entropy

Reformulate the problem as constrained, non linear optimization \(S = -\Sigma I \log{\frac{I}{P}}\)

3.5. Solve in Julia

function regularize(model, prior, total_flux)
    entropy_loss = βent * entropy(model,prior)
    flux_loss = βflux * flux(model,total_flux)
    total_variance_loss = βtv * total_variance(model)
    return entropy_loss + flux_loss + total_variance_loss
end

Zygote.gradient(x -> regularize(x, prior, total_flux), model)

3.6. SgrA*

sgra.png

3.7. M87*

m87.png