
Simple formally verified compiler in Lean

Let’s talk about Emacs

Translator

Assumptions:
I Arithmetic is correctly parsed
I Only addition
I Only integers

Data types

Calculator:
data Instruction = Loadi Int

| Add

Algebraic expression:
data AExp = N Int

| Plus Aexp Aexp

Example:

-- 4 + 5

[Loadi 4, Loadi 5, Add]

Example:

-- Note: :: is cons and : is hastype

translate : Aexp −> [Instruction]
| (N i) := [Loadi i]
| (Plus a b) := (translate a) ++ (translate b) ++ [Add]

Example:

translate : Aexp -> [Instruction]
| (N i) := [Loadi i]
| (Plus a b) := (translate a) ++ (translate b) ++ [Add]

translate (Plus (N 4) (N 3))

Example:

translate : Aexp -> [Instruction]
| (N i) := [Loadi i]
| (Plus a b) := (translate a) ++ (translate b) ++ [Add]

translate (Plus (N 4) (N 3)) ==
(translate (N 4)) ++ (translate (N 3)) ++ [Add] ==

Example:

translate : Aexp -> [Instruction]
| (N i) := [Loadi i]
| (Plus a b) := (translate a) ++ (translate b) ++ [Add]

translate (Plus (N 4) (N 3)) ==
(translate (N 4)) ++ (translate (N 3)) ++ [Add] ==
[Loadi 4] ++ [Loadi 3] ++ [Add] ==

Example:

translate : Aexp -> [Instruction]
| (N i) := [Loadi i]
| (Plus a b) := (translate a) ++ (translate b) ++ [Add]

translate (Plus (N 4) (N 3)) ==
(translate (N 4)) ++ (translate (N 3)) ++ [Add] ==
(Loadi 4) ++ (Loadi 3) ++ [Add] ==
[Loadi 4, Loadi 3, Add]

How do we know the translation is correct?

How do we know the translation is correct?

Why should I care?
Write a couple of tests and move on, it’s just a calculator that
nobody uses anymore

How do we know the translation is correct?

Well, if we add these things to the calculator:
I Variables because those are nice to have when calculating
I Conditional branch instruction

Simple formally verified compiler in Lean

Simple language:
I integers
I addition
I variables
I if statements
I while loops
I superset of the calculator

Back to the question

How do we know the translation is correct?

We could write a proof

The value of the arithmetic expression should be put on the top of
the stack after the translated version is run on the calculator

calculate stk (translate e) == (eval e) :: stk

We could write a proof

calculate stk (translate e) == (eval e) :: stk

Example

[Loadi 4, Loadi 3, Add]

4 :: stk
3 :: 4 :: stk
7 :: stk

Proof by induction

Base case: The expression is a number

calculate stk (translate (N n))
==

calculate stk (Loadi n)
==
n :: stk

Induction case: The expression is an addition

Induction hypotheses:
calculate stk (translate a) == eval a :: stk
calculate stk (translate b) == eval b :: stk

Proof:

calculate stk (translate (Plus a b))
==

calculate stk (translate a ++ translate b ++ [Add])
==

calculate (eval a :: stk) (translate b ++ [Add])
==

calculate (eval b :: eval a :: stk) [Add]
==

(eval b + eval a) :: stk

Ok, but how do we know that the translation program does
what we think it does?
We can obviously never be 100% sure, for all we know we hallucinate
everything.

How can we be even more sure?

Let’s take a step back

What techniques do we know for proving theorems that we think
should be correct? What proof techniques do we know?

Proof Techniques

I Natural deduction

Natural Deduction

Natural deduction isn’t enough

Propositions as Types

I will rush through this for the interest of time, but if you are
interested see Wadler’s paper Propositions as Types
I propositions = types
I proofs = programs

foo : (a −> c) −> (b −> c) −> (Either a b) −> c
foo f g ab =
case ab of
Left a −> f a
Right b −> g b

Proofs about programs in the same language

https://doi.org/10.1145/2699407

The interactive theorem prover Lean

I A dependently typed functional programming language
I A language for mathematics

Types

I Proofs about programs in the same language
I The language can check that the proofs are correct
I If program changes the proof is invalid

Types

data Nat = Z
| Suc Nat

Types

data List a = Nil
| Cons a List

consbox.png

Types

data Nat = Z
| Suc Nat

add : Nat −> Nat −> Nat
add a Z = a
add a (Suc b) = add (Suc a) b

nat.png

Semantics of the stack machine

P[i] = loadi n
P ` (i , s, stk)⇒ (i + 1, s, n :: stk)

P[i] = add
P ` (i , s, a :: b :: stk)⇒ (i + 1, s, (a+ b) :: stk)

Figure: Small-step semantics for one instruction in the stack machine

Semantics of the stack machine in Lean

inductive iexec : instr -> config -> config -> Prop
| loadi (i : Z) (s : state) (stk : list Z)

(n : Z):
iexec (instr.loadi n) (i , s, stk)

(i + 1, s, n :: stk)

| add (i : Z) (s : state) (stk : list Z)
(a b : Z) :

iexec instr.add (i , s, a :: b :: stk)
(i + 1, s, (a + b) :: stk)

Note: This type can’t be constructed in normal Haskell

The proof in Lean

The base case from before but in Lean:

show (acomp (aexp.N n)) `
(0, s, stk) ⇒*
(1, s,
aval (aexp.N n) s :: stk),

exact star.single (exec1.exec1 (by simp)
(iexec.loadi _)),

Simple formally verified compiler in Lean

I semantics, compiler and proof written in Lean
I Proof of correctness for terminating programs

The end

Resources

I Propositions as Types1

I CompCert: a formally verified optimizing C compiler2

I Hitchhiker’s Guide to Logical Verification3

I Concrete Semantics with Isabelle/HOL4

I Lean5

1http:
//www.cs.bc.edu/~muller/teaching/lc/WadlerPropositionsAsTypes.pdf

2https://compcert.org/
3https://github.com/blanchette/logical_verification_2020/raw/

master/hitchhikers_guide
4http://concrete-semantics.org/
5https://leanprover-community.github.io/

http://www.cs.bc.edu/~muller/teaching/lc/WadlerPropositionsAsTypes.pdf
http://www.cs.bc.edu/~muller/teaching/lc/WadlerPropositionsAsTypes.pdf
https://compcert.org/
https://github.com/blanchette/logical_verification_2020/raw/master/hitchhikers_guide
https://github.com/blanchette/logical_verification_2020/raw/master/hitchhikers_guide
http://concrete-semantics.org/
https://leanprover-community.github.io/

